PMT

Question			Marking details	Marks Available
1	<i>(a)</i>	(i)	Vectors have magnitude and direction; scalars have only magnitude [Reference to vectors and scalars required for complete answer, e.g. vectors have direction and scalars do not is enough]	1
		(ii)	VectorScalarvelocitydistanceforcetimetemperatureOne incorrect $\rightarrow 1$ Two or more incorrect $\rightarrow 0$	2
	<i>(b)</i>	(i)	$1600 \cos 25^{\circ} (1) = 1450 \text{ N} (1)$	2
		(ii)	Long (1) because greater component in the direction of motion (1) [NB Decrease angle only – not enough. 2^{nd} mark for reference to component either in direction of motion or perpendicular to it]	2
				[7]
2.	<i>(a)</i>		No net / resultant force [accept 'total'](1) No net / resultant moment (1) [1 mark max if 'net' or equiv missing]	2
	<i>(b)</i>	(i)	Downward vertical arrow indicated \pm 1 cm of centre of bar [halfway between 30 N and 25 N forces], labelled 20 N	1
		(ii)	$T_A \times 3(1) = 20 \times 1.5(1) + 40 \times 2.35 + 30 \times 1.75 + 25 \times 0.85(1)$ [Note: LHS \rightarrow (1); RHS: moment of bar (1), all other moments (1)] $T_A = 65.9 \text{ N}(1)$	4
		(iii)	115 N (1) – 65.9 N (e.c.f.) = 49.1 N (1) [Accept solution based on taking moments about chain A or other equiv method]	2 [9]

Question			Marking details	Marks Available
3	(a) A material which has zero [electrical] resistance [or equiv.]		1	
	(b)		Resistance Axes (1) Line (not nec straight above T_C)(1) Temperature at which resistance [of material] drops [suddenly] to zero [or label on graph] (1)	3
	(c)		No [accept little] heat [accept energy] lost / generated (1) [Accept – large current can be produced from zero /small pd] Any application, e.g. nuclear fusion / tokamaks, particle accelerators / LHC, MRI scanners / large motors or generators (1)	2 [6]
4.	(a)			
		-	A V wire V	
			Wire in functioning circuit with both meters correctly connected (1) Method of varying current / pd (1)	2
	<i>(b)</i>	(i)	Resistance values / Ω: 4.00,4.00, 4.33, 4.75, 6.00 [all correct]	1
		(ii)	Graph: Axes [scales, labels, units] (1), plots (1) line (1) [axes – no s.f. penalty; line – produced to <i>R</i> axis – accept extrapolation]	3
	(c)	(i)	$0 \rightarrow 0.2$ A ['at start', 'to begin with'] no change / constant (1) $0.2 \text{ A} \rightarrow 0.5$ A ['then'] increasing with current (1)	2
		(ii) (iii)	$0 \rightarrow 0.2$ A [e.c.f. from graph] Temperature wire not constant / increases [accept changes] [with current]	1 1
	(d)		Current / ammeter reading would [rapidly rise from 0 then] decrease (1) and then stabilise (1)	2
				[12]

Question			Marking details	Marks Available
5.	(a)		E = total energy transferred [per unit charge passed] in the source (1) V = energy [per unit charge passed] converted [accept 'lost'] in the internal resistance (1)	Trunuore
			Correct use of "per unit charge" in definitions of both E and V . (1)	3
	<i>(b)</i>	(i)	$Q = 0.22 \times 3600 [= 792 \text{ C}]$	1
		(ii)	$E = \frac{4750}{792(\text{e.c.f.})} \ [= 6.0 \text{ V}]$	1
		(iii)	$V = \frac{4500}{792(\text{e.c.f.})} (1) [= 5.7 \text{ V}]$	
			or $\left[P = \frac{4500}{3600} = 1.25W.V = \frac{1.25}{0.22} = 5.7 \right] V$	1
		(iv)	r = 0.3 V [= ans (ii) - ans (iii) e.c.f.]	1
		(v)	0.32 (e.c.f.) = 0.22 r (1) [or by impl]	
			$r = 1.45 \Omega(1)$ [e.c.f. based upon (1) to (1v)]	2
				[9]
6	(a)		Accept answers in range [-] 9.6 to [-] 10.0 [m/s ²] [no unit or sign	
			Acceleration <u>due to gravity</u> (1)	2
	(b)		4.0 m s^{-1} [accept 3.9 or 4]	1
	(c)		[Constant] deceleration from 4 m s ⁻¹ to zero / rest in 0.4[1] s (1) [Constant] accel from rest to -4 m s^{-1} from 0.4[1] s to 0.8[2] s (1) [Momentarily] stationary for at its may beight at 0.4[1] s (1)	
			[NB or equivalent wordings to the same effect]	3
	(d)	(i)	Area shaded between graph and abscissa from 0.8[2] to 3.2 s	1
		(ii)	Shaded area: $\frac{1}{2} \times 2.8 \times 2.7 - \frac{1}{2} \times 0.4 \times 4$ (1) = 37 m (1) [or $\frac{1}{2} (4 + 27) \times (3.2 - 0.8)$ (1) = 37.2 m (1) or equiv. using	
			equations of motion, eg. $x = ut + \frac{1}{2}at^2$] [37.5 ± 1.5 \checkmark]	2
			Directly beneath (1) <u>Horizontal</u> speed constant (1)because <u>no horizontal</u> force[s] acting on stone (1) [NB 'no' required; horizontal only needed once]	3
				[12]

Question			Marking details	Marks Available
7.	(a) (i) Force × distance (1) moved in direction of force (1) [or equiv, eg component of force in direction of movement × distance moved, or $W = Fd(1)\cos\theta(1)$ - explanation for 2 nd mark]			
			[Work is done when a force moves its point of application $\rightarrow 1$ only]	2
		(ii)	kg m s ⁻² (1) × m → kg m ² s ⁻² (1)	2
	<i>(b)</i>	(i)	$E_{\rm P} \text{ lost } = 70 \times 9.81 \times \underline{120 \sin 20^{\circ}} (1) \text{ [or by impl.]} \\ = 28\ 000 \text{ J } [28148] (1) \\ \text{[Use of 10 for } g - 1^{\text{st}} \text{ mark lost]}$	2
		(ii)	At A, $E_k = \frac{1}{2} \times 70 \times 6^2$ (1) [= 1260 J] At B, $E_k = \frac{1}{2} \times 70 \times 21^2$ (1) [=15435 J] $\Delta E_k = 14175$ J (1) [If $(21 - 6)^2$ calculated $\rightarrow 1$ mark only]	3
	(c)	(i)	Energy cannot be created or destroyed only changed from one form to another	1
		(ii)	Energy is converted to [accept: lost as] internal energy heat / sound / ke of air (1) Detail: Molecules of air gain E_k as skier moves / molecules of of snow / skis gain E_k / vibrational energy (1)	2
	(d)		<u>Use</u> of $W = Fd(1)$ [or by impl.] 28184 - 14175 (1) (e.c.f. on both) = $F \times \underline{120}(1)$ [or by impl.] F = 117 N(1)	4
			[Accept answer based upon force components]	[16]

г)/ /	T
-	'IVI	
•		•

Question			Marking details	Marks Available
8	<i>(a)</i>		[A conductor is] a material through which charge / electrons [accept ions / holes] can flow / move or which contains free / delocalised electrons.	1
	(b)	(i)	Volume = $2.0 \times 10^{-6} \times 2.0$ (1) [or by impl] mass = $8920 \times 4.0 \times 10^{-6}$ (1) [= 0.0357 kg] ((unit))	2
		(ii)	$\frac{0.0357(\text{e.c.f.})}{1.05 \times 10^{25}} (1) \times 1.5 (1) [= 5.1 \times 10^{23} \text{ electrons}]$	2
		(iii)	$n = \frac{5.1 \times 10^{23} (\text{e.c.f.})}{4.0 \times 10^{-6} (\text{e.c.f.})} (1) [= 1.28 \times 10^{29} \text{ m}^{-3}]$	
			$v = \frac{I}{nAe}$ [manipulation at any stage] (1)	
			$v = \frac{1.2}{1.28 \times 10^{29} \times 2.0 \times 10^{-6} \times 1.6 \times 10^{-19}} $ (subst) (1) [e.c.f. on <i>n</i>]	
			$v = 2.9 \times 10^{-5} \text{ m s}^{-1} (1)$ [NB use of 5.1×10 ²³ for $n \to 7.3(5) \text{ m s}^{-1}$]	4
				[9]