

Question			Marking details	Marks Available
5.	(a)	(i) (ii) (iii) (iv) (v)	$E=$ total energy transferred [per unit charge passed] in the source (1) $V=$ energy [per unit charge passed] converted [accept 'lost'] in the internal resistance (1) Correct use of "per unit charge" in definitions of both E and V. (1) $\begin{aligned} & Q=0.22 \times 3600[=792 \mathrm{C}] \\ & E=\frac{4750}{792(\text { e.c.f.) }}[=6.0 \mathrm{~V}] \\ & V=\frac{4500}{792(\text { e.c.f.) }}(1)[=5.7 \mathrm{~V}] \\ & \text { or }\left[P=\frac{4500}{3600}=1.25 \mathrm{~W} . \mathrm{V}=\frac{1.25}{0.22}=5.7\right] \mathrm{V} \\ & r=0.3 \mathrm{~V}[=\text { ans (ii) }- \text { ans (iii) e.c.f.] } \\ & 0.32 \text { (e.c.f.) }=0.22 r(1)[\text { or by impl }] \\ & r=1.45 \Omega(1) \text { [e.c.f. based upon (i) to (iv) }] \end{aligned}$	3 1 1 1 1 2 [9]
6	(a) (b) (c) (d)	(i) (ii)	Accept answers in range [-] 9.6 to $[-] 10.0\left[\mathrm{~m} / \mathrm{s}^{2}\right]$ [no unit or sign penalty] (1) Acceleration due to gravity (1) $4.0 \mathrm{~m} \mathrm{~s}^{-1}$ [accept 3.9 or 4] [Constant] deceleration from $4 \mathrm{~m} \mathrm{~s}^{-1}$ to zero / rest in $0.4[1] \mathrm{s}(1)$ [Constant] accel from rest to $-4 \mathrm{~m} \mathrm{~s}^{-1}$ from $0.4[1]$ s to 0.8 [2] s (1) [Momentarily] stationary [or at its max height] at $0.4[1] \mathrm{s}(1)$ [NB or equivalent wordings to the same effect] Area shaded between graph and abscissa from $0.8[2]$ to 3.2 s Shaded area: $1 / 2 \times 2.8 \times 2.7-1 / 2 \times 0.4 \times 4(1)=37 \mathrm{~m}(1)$ [or $1 / 2(4+27) \times(3.2-0.8)(1)=37.2 \mathrm{~m}(1)$ or equiv. using equations of motion, eg. $\left.x=u t+\frac{1}{2} a t^{2}\right][37.5 \pm 1.5 \checkmark]$ Directly beneath (1) Horizontal speed constant (1)because .. no horizontal force[s] acting on stone (1) [NB 'no' required; horizontal only needed once]	2 1 3 1 2 3 [12]

Question			Marking details	Marks Available
7.	(a)	(i)	Force \times distance (1) moved in direction of force (1) [or equiv, eg component of force in direction of movement \times distance moved, or $W=F d(1) \cos \theta(1)-$ explanation for $2^{\text {nd }}$ mark] [Work is done when a force moves its point of application $\rightarrow 1$ only]	2
		(ii)	$\mathrm{kg} \mathrm{~m} \mathrm{~s}^{-2}(1) \times \mathrm{m} \rightarrow \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}(1)$	2
	(b)	(i)	$\begin{aligned} & E_{\mathrm{P}} \text { lost }\left.=70 \times 9.81 \times \underline{120 \sin 20^{\circ}}(1) \text { [or by impl. }\right] \\ &=28000 \mathrm{~J}[28148](1) \\ & {\left[\text { Use of } 10 \text { for } g-1^{\text {st }} \text { mark lost }\right] } \end{aligned}$	2
		(ii)	$\begin{aligned} & \text { At A, } E_{\mathrm{k}}=1 / 2 \times 70 \times 6^{2}(1)[=1260 \mathrm{~J}] \\ & \text { At B, } E_{\mathrm{k}}=1 / 2 \times 70 \times 21^{2}(1)[=15435 \mathrm{~J}] \\ & \Delta E_{\mathrm{k}}=14175 \mathrm{~J}(1) \\ & {\left[\text { If }(21-6)^{2} \text { calculated } \rightarrow 1 \text { mark only }\right]} \end{aligned}$	3
	(c)	(i)	Energy cannot be created or destroyed only changed from one form to another	1
		(ii)	Energy is converted to [accept: lost as] internal energy heat / sound / ke of air (1) Detail: Molecules of air gain E_{k} as skier moves / molecules of of snow / skis gain E_{k} / vibrational energy (1)	2
	(d)		$\begin{aligned} & \text { Use of } W=F d(1) \text { [or by impl.] } \\ & 28184-14175(1) \text { (e.c.f. on both) }=F \times \underline{120} \text { (1) [or by impl.] } \\ & F=117 \mathrm{~N}(1) \end{aligned}$	4
			[Accept answer based upon force components]	[16]

Question			Marking details	Marks Available
8	(a)		[A conductor is] a material through which charge / electrons [accept ions / holes] can flow / move or which contains free / delocalised electrons.	1
	(b)	(i)	$\begin{aligned} & \text { Volume }=2.0 \times 10^{-6} \times 2.0(1)[\text { or by impl }] \\ & \text { mass }=8920 \times 4.0 \times 10^{-6}(1)[=0.0357 \mathrm{~kg}]((\text { unit })) \end{aligned}$	2
		(ii)	$\frac{0.0357(\text { e.c.f.) }}{1.05 \times 10^{25}}(1) \times 1.5(1)\left[=5.1 \times 10^{23} \text { electrons }\right]$	2
		(iii)	$\begin{aligned} & n=\frac{5.1 \times 10^{23}(\text { e.c.f. })}{4.0 \times 10^{-6}(\text { e.c.f. })}(1)\left[=1.28 \times 10^{29} \mathrm{~m}^{-3}\right] \\ & v=\frac{I}{n A e}[\text { manipulation at any stage }](1) \\ & \left.v=\frac{1.2}{1.28 \times 10^{29} \times 2.0 \times 10^{-6} \times 1.6 \times 10^{-19}}(\text { subst })(1) \text { [e.c.f. on } n\right] \\ & v=2.9 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}(1) \end{aligned}$ $\text { [NB use of } \left.5.1 \times 10^{23} \text { for } n \rightarrow 7.3(5) \mathrm{m} \mathrm{~s}^{-1}\right]$	4
				[9]

